LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2011

MT 3810 / 3803 - TOPOLOGY

AUCEAT	LUX VESTRA	5°.	M1 0010 / 0000 10102001	
Date : 31-10 Time : 9:00 -			<u> </u>	Max. : 100 Marks
Ansv	ver al	l ques	tions. All questions carry equal marks.	5 x 20 = 100 marks
01)	(a)	(i) (ii)	Let X be a non-empty set and let d be a real function of X which satisfies the following conditions. a) $d(x, y) = 0 \hat{U} x = y$ b) $d(x, y) \pm d(x, y) + d(x, y) + x, y, z \hat{I} X$. (or) Let X be a metric space. Prove that a subset G of X is of spheres.	Show that d is a metric on X.
	(b)	(i) (ii)	Let X be a metric space, and let Y be a subspace of X. F is closed. State and prove Cantor's Intersection Theorem.	
		(iii)	State and prove Baire's Theorem. (or)	(6+5+4)
		(iv)	Let X and Y be metric spaces and let f be a mapping of continuous at $x_n \otimes x_o \hat{U}$ $f(x_n) \otimes f(x_o)$ and f is continuous X whenever G is open in Y.	
02)	(a)	(i)	Prove that every separable metric space is second count (or)	able.
		(ii)	Define a topology on a non-empty set X with an example space and A be an arbitrary subset of X . Show that \overline{A}	
			of x intersects A $\}$.	(5)
	(b)	(i)	Show that any continuous image of a compact space is of	compact.
		(ii)	Prove that any closed subspace of a compact space is co	ompact.
		(iii)	Give an example to show that a compact subspace of a closed. (or)	compact space need not be (6+6+3)
		(iv)	Show that a topological space is compact, if every subtsubcover.	pasic open cover has a finite (15)
03)	(a)	(i)	State and prove Tychnoff's Theorem.	

(or)

		(ii)	Show that a metric space is compact if it is complete and totally bounded. (5)			
	(b)	(i)	Prove that in a sequentially compact space, every open cover has a Lebesgue's number.			
		(ii)	Prove that every sequentially compact metric space is totally bounded. (10+5) (or)			
		(iii)	State and prove Ascoli's Theorem. (15)			
04)	(a)	(i)	Show that every subspace of Hausdorff space is also Hausdorff. (or)			
		(ii)	Prove that every compact Hausdorff Space is normal. (5)			
	(b)	(i)	Prove that the product of any non-empty class of Hausdorff Spaces is a Hausdorff Space.			
		(ii)	Prove that every compact subspace of a Hausdorff space is closed.			
		(iii)	Show that a one-to-one continuous mapping of a compact space onto a Hausdorff Space is a homeomorphism. (6+4+5)			
			(or)			
		(iv)	` '			
		(11)	of X onto a subspace of $;$ And X is therefore metrizable. (15)			
05)	(a)	(i)	Prove that any continuous image of a connected space is connected. (or)			
		(ii)	Show that the components of a totally disconnected space are its points. (5)			
	(b)	(i)	Show that the product of any non-empty class of connected spaces is connected.			
		(ii)	Let X be a compact Hausdorff Space. Show that X is totally disconnected, iff it has open base whose sets are also closed. (6+9)			
			(or)			
		(iii)	State and prove the Weierstrass Approximation Theorem. (15)		
